

PRODUCT DATA SHEET

WCD 6404

SOLID MIG WIRES - LOW ALLOY STEEL

Austmig ESD2

SUMMARY

- > Copper Coated, High Manganese-Molybdenum Gas Metal Arc (MIG) Welding Wire
- > For the all Positional Welding of Medium to Higher Strength Steels

CLASSIFICATION

- AS/NZS 14341-B-G 55A 3U M G4M31
- > AWS A5.28 ER80S-D2

DESCRIPTION AND APPLICATION

Austmig ESD2 is a copper coated, low alloy steel wire used for welding medium to higher strength steels, particularly where service temperatures up to 500 °C are encountered. ESD2 gives excellent resistance to porosity using Argon based gas mixtures (i.e. Ar/CO₂, Ar/O₂, Ar/CO₂/O₂). When porosity is a potential problem due to dirty or rusty surfaces or higher than normal sulphur contents, Austmig ESD2 will provide a consistently sound weld deposit.

Austmig ESD2 is also suitable for out-of-position welding due to its quick freezing weld pool. ESD2 produces high quality welds on plain carbon and C-Mn steels, low alloy steels and higher strength used in pressure vessels and boilers, such as petrochemical and power generation industries, operating at elevated temperatures. Austmig ESD2 may also be used for the fillet welding of higher tensile, quenched and tempered steels, such as Bisalloy 70 and 80 where the lower strength weld metal may be compensated by larger fillet sizes.

When used with suitable shielding gases, Austmig ESD2 will consistently produce very low "H5", weld metal diffusible hydrogen levels, for excellent resistance to HAZ or hydrogen induced cracking.

OPERATIONAL DATA

WIRE SIZE (MM)	WELDING CURRENT RANGE (A)	ARC VOLTAGE RANGE *(V)
0.9	70 - 230	15 - 26
1.2	120 - 350	18 - 32

Welding Current DC +

SHIPPING APPROVAL

LR 3S, 3YS

TYPICAL ALL WELD METAL CHEMICAL ANALYSIS

С	Mn	Si	Мо	Fe
0.08	1.84	0.71	0.51	Bal

TYPICAL ALL WELD METAL MECHANICAL ANALYSIS

Gas Type	Ar+18% CO ₂	CO ₂
Yield Stress	569 MPa	562 MPa
Tensile Strength	662 MPa	675 MPa
Elongation	25%	24%
CVN Impact Values	58J @ -30°C	81J @ -30°C

In as welded condition.

NOTE: The use of less oxidizing Argon based gas mixtures will result in higher manganese and silicon weld metal recovery, leading to higher tensile properties, particularly in heavy multi pass butt welds.

PACKAGING DATA

WIRE SIZE (MM)	PACK SIZE AND TYPE	PART NO.
0.9	15kg Spool	ESD209S
1.2	15kg Spool	ESD212S

The information contained or otherwise referenced herein is presented only as "typical" without guarantee or warranty, and Welding Industries of Australia expressly disclaims any liability incurred from any reliance thereon. Typical data is obtained when welded and tested in accordance with the AWS and or AS/NZS specification. Other tests and procedures may produce different results. No data is to be construed as a recommendation for any welding condition or technique by Welding Industries of Australia.

Issue CA - December 2014

^{*}Voltage is determined by arc current and electrode arc length. Welding currents and voltage shown are operational guides only.